Local existence and uniqueness of solutions to one-dimensional tumor invasion model
Full item record
dc.contributor.author | Ito, Akio | |
---|---|---|
dc.contributor.author | Gokieli, Maria | |
dc.contributor.author | Niezgódka, Marek | |
dc.contributor.author | Szymańska, Zuzanna | |
dc.contributor.organization | Department of Electronic Engineering and Computer Science School of Engineering, Kinki University 1, Hiroshima | en |
dc.contributor.organization | Interdyscyplinarne Centrum Modelowania Matematycznego i Komputerowego, Uniwersytet Warszawski | pl_Pl |
dc.date.accessioned | 2011-06-10T09:39:55Z | |
dc.date.available | 2011-06-10T09:39:55Z | |
dc.date.issued | 2010 | |
dc.description.abstract | In the present paper, we propose a modified tumor invasion model which was originally proposed in Chaplain and Anderson (2003) [1]. And we show the local existence and uniqueness of solutions to approximate systems of the 1D modified tumor invasion model. Especially, we introduce a new function and show that our system is equivalent to the nonlinear second-order PDE, which should be reformulated by the new function. Roughly speaking, our system can be rewritten into only one second-order PDE and this fact is quite essential to show the local existence of solutions to the approximate systems. | en |
dc.description.eperson | Maria Gokieli | |
dc.identifier.citation | A. Ito, M. Gokieli, M. Niezgódka and Z. SZymańska, Local existence and uniqueness of solutions to one-dimensional tumor invasion model, Nonlinear Analysis B - RWA, Volume 11, Issue 5, 2010, pp. 3555-3566 | |
dc.identifier.issn | 1468-1218 | |
dc.identifier.uri | https://open.icm.edu.pl/handle/123456789/69 | |
dc.language.iso | en | en |
dc.publisher | Elsevier | en |
dc.rights | Dozwolony użytek | * |
dc.subject | Tumor invasion | en |
dc.subject | Haptotaxis-degenerate system | en |
dc.subject | Nonlinear second-order PDE | en |
dc.title | Local existence and uniqueness of solutions to one-dimensional tumor invasion model | en |
dc.type | article | en |
Files for this record
Original bundle
1 - 1 of 1
Name: | AI_MG_MN_ZSz_Nonlinear_Analysis_B_RWA_1278.pdf |
---|---|
Size: | 437.08 KB |
Format: | Adobe Portable Document Format |
Description: |
Download