Sensitive, Efficient and Portable Analysis of Molecular Exchange Processes by Hyperpolarized Ultrafast NMR
Abstract
Molecular exchange processes are ubiquitous in nature. Here, we introduce a method to analyze exchange processes by using low-cost, portable, single-sided NMR instruments. The inherent magnetic field inhomogeneity of the single-sided instruments is exploited to achieve diffusion contrast of exchange sites and spatial encoding of 2D data. This so-called ultrafast diffusion exchange spectroscopy method shortens the experiment time by two to four orders of magnitude. Furthermore, because full 2D data are measured in a single scan (in a fraction of a second), the sensitivity of the experiment can be improved by several orders of magnitude using so-called nuclear spin hyperpolarization methods (in this case, dissolution dynamic nuclear polarization). As the first demonstration of the feasibility of the method in various applications, we show that the method enables quantification of intra- and extracellular exchange of water in a yeast cell suspension.
Description
Financial support from the European Research Council (Project number 772110), Academy of Finland (grant nos. 323480, 340099, 332006 and 896824), Marie Skłodowska-Curie Actions (grant no. 321701), National Science Centre, Poland (grant no. 2021/41/B/ST4/01286), and the University of Oulu (Kvantum Institute) is gratefully acknowledged. Part of the work was carried out with the support of the Centre for Material Analysis, University of Oulu, Finland.
Keywords
Citation
Y. Kharbanda, M. Urbańczyk, V. V. Zhivonitko, S. Mailhiot, M. I. Kettunen, V.-V. Telkki, Angew. Chem. Int. Ed. 2022, 61, e202203957; Angew. Chem. 2022, 134, e202203957.