Convergence of the EBT method for a non-local model of cell proliferation with discontinuous interaction kernel
Full item record
dc.contributor.author | Gwiazda, Piotr | |
---|---|---|
dc.contributor.author | Miasojedow, Błażej | |
dc.contributor.author | Skrzeczkowski, Jakub | |
dc.contributor.author | Szymańska, Zuzanna | |
dc.contributor.organization | Institute of Mathematics, Polish Academy of Sciences, Warsaw, Poland | en |
dc.contributor.organization | Faculty of Mathematics, Informatics and Mechanics, University of Warsaw, Warsaw, Poland | en |
dc.contributor.organization | Interdisciplinary Centre for Mathematical and Computational Modelling, University of Warsaw | en |
dc.contributor.organization | Institute of Mathematics, Polish Academy of Sciences, Warsaw, Poland | en |
dc.date.accessioned | 2023-07-10T15:31:34Z | |
dc.date.available | 2023-07-10T15:31:34Z | |
dc.date.issued | 2022-02-02 | |
dc.description.abstract | We consider the EBT algorithm (a particle method) for the nonlocal equation with a discontinuous interaction kernel. The main difficulty lies in the low regularity of the kernel, which is not Lipschitz continuous, thus preventing the application of standard arguments. Therefore, we use the radial symmetry of the problem instead and transform it using spherical coordinates. The resulting equation has a Lipschitz kernel with only one singularity at zero. We introduce a new weighted flat norm and prove that the particle method converges in this norm. We also comment on the two-dimensional case that requires the application of the theory of measure spaces on general metric spaces and present numerical simulations confirming the theoretical results. In a companion paper we apply the Bayesian method to fit parameters to this model and study its theoretical properties. | en |
dc.description.sponsorship | B. Miasojedow, J. Skrzeczkowski, and Z. Szymańska acknowledge the support from the National Science Centre, Poland – grant No. 2017/26/M/ST1/00783. P. Gwiazda was supported by the National Science Centre, Poland – grant No. 2018/30/M/ST1/00423. The calculations were made with the support of the Interdisciplinary Centre for Mathematical and Computational Modelling of the University of Warsaw under the computational grant no. G79-28. | |
dc.identifier.citation | Gwiazda, P., Miasojedow, B., Skrzeczkowski, J., Szymańska, Z. (2023). Convergence of the EBT method for a non-local model of cell proliferation with discontinuous interaction kernel, IMA Journal of Numerical Analysis, 43(1), 590–626. https://doi.org/10.1093/imanum/drab102 | en |
dc.identifier.doi | 10.1093/imanum/drab102 | |
dc.identifier.issn | 0272-4979 | |
dc.identifier.issn | 1464-3642 | |
dc.identifier.uri | https://open.icm.edu.pl/handle/123456789/22689 | |
dc.language.iso | en | |
dc.publisher | Oxford University Press | en |
dc.rights | Uznanie autorstwa 4.0 Międzynarodowe | * |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | * |
dc.subject | particle method | en |
dc.subject | EBT algorithm | en |
dc.subject | measure solutions | en |
dc.subject | flat metric | en |
dc.subject | nonlocal equation | en |
dc.subject | convergence analysis | en |
dc.subject | cancer modelling | en |
dc.title | Convergence of the EBT method for a non-local model of cell proliferation with discontinuous interaction kernel | en |
dc.type | article | en |
Files for this record
Original bundle
1 - 1 of 1
Name: | Convergence of the EBT method for a non-local model of cell proliferation with discontinuous interaction kernel.pdf |
---|---|
Size: | 418.59 KB |
Format: | Adobe Portable Document Format |
Description: |
Download
License files
Name: | license.txt |
---|---|
Size: | 236 B |
Format: | Plain Text |
Description: |
Download
Name: | license_rdf |
---|---|
Size: | 913 B |
Format: | RDF serialized in XML |
Description: |
Download