Wpływ poziomu zakłóceń losowych na możliwość identyfikacji modeli ARIMA

Abstract
Ważną klasę modeli szeregów czasowych są modele: autoregresyjne, średniej ruchomej oraz mieszane modele autoregresyjne i średniej ruchomej. Są one stosowane do modelowania i prognozowania na podstawie stacjonarnych szeregów czasowych. Metody szacowania parametrów takich modeli szeregów czasowych są zawarte w dostępnych programach statystycznych i ekonometrycznych. W modelach ARIMA bardzo ważnym etapem analizy szeregów, poprzedzającym estymację parametrów, jest identyfikacja rodzaju i rzędu modelu przeprowadzana na podstawie wzorców generycznych oraz wiedzy eksperckiej analityka. Pomiary sygnałów stochastycznych są obarczone zwykle losowymi błędami. Poziom błędów losowych pomiaru, akceptowalny ze względu na rozpoznawalność mierzonego sygnału, zależy od amplitudy wahań sygnału i jego charakteru. Biorąc pod uwagę specyfikę modelowania szeregów metodą Boxa-Jenkinsa, postanowiono ocenić stopień wpływu zakłóceń losowych (błędów losowych pomiaru) o charakterze białego szumu o różnym poziomie wariancji na identyfikowalność postaci modeli oraz jakość estymacji parametrów szeregów: autoregresyjnych - ARIMA(1,0,0), średniej ruchomej - ARIMA(0,0,1) oraz mieszanych- ARIMA(1,0,1).
Description
Keywords
Citation
J. Nazarko, M. Rybaczuk, A. Jurczuk, Wpływ poziomu zakłóceń losowych na możliwość identyfikacji modeli ARIMA, Prace Naukowe Akademii Ekonomicznej im. Oskara Langego we Wrocławiu Nr 1076 „Taksonomia 12”, 2005, s. 238-247
Related research dataset
Belongs to collection